Search: Look for:   Last 1 Month   Last 6 Months   All time

Cheaper, quieter and fuel-efficient biplanes could fly faster than sound

Washington, Tue, 20 Mar 2012 ANI

Washington, Mar 20 (ANI): Researchers have come up with the biplane design that could produce considerably less drag than conventional single wing aircrafts.

 

For 27 years, the Concorde provided its passengers with a rare luxury: time saved. For a pricey fare, the sleek supersonic jet ferried its ticketholders from New York to Paris in a mere three-and-a-half hours - just enough time for a nap and an aperitif.

 

Over the years, expensive tickets, high fuel costs, limited seating and noise disruption from the jet's sonic boom slowed interest and ticket sales. On Nov. 26, 2003, the Concorde - and commercial supersonic travel - retired from service.

 

Since then, a number of groups have been working on designs for the next generation of supersonic jets. Now an MIT researcher has come up with a concept that may solve many of the problems that grounded the Concorde.

 

Qiqi Wang, an assistant professor of aeronautics and astronautics, says the solution, in principle, is simple: Instead of flying with one wing to a side, why not two.

 

Wang and his colleagues Rui Hu, a postdoc in the Department of Aeronautics and Astronautics, and Antony Jameson, a professor of engineering at Stanford University, have shown through a computer model that a modified biplane can, in fact, produce significantly less drag than a conventional single-wing aircraft at supersonic cruise speeds.

 

This decreased drag, according to Wang, means the plane would require less fuel to fly. It also means the plane would produce less of a sonic boom.

 

"The sonic boom is really the shock waves created by the supersonic airplanes, propagated to the ground," Wang said.

 

"It's like hearing gunfire. It's so annoying that supersonic jets were not allowed to fly over land."

 

With Wang's design, a jet with two wings - one positioned above the other - would cancel out the shock waves produced from either wing alone.

 

Wang credits German engineer Adolf Busemann for the original concept. In the 1950s, Busemann came up with a biplane design that essentially eliminates shock waves at supersonic speeds.

 

Normally, as a conventional jet nears the speed of sound, air starts to compress at the front and back of the jet.

 

As the plane reaches and surpasses the speed of sound, or Mach 1, the sudden increase in air pressure creates two huge shock waves that radiate out at both ends of the plane, producing a sonic boom.

 

Through calculations, Busemann found that a biplane design could essentially do away with shock waves.

 

Each wing of the design, when seen from the side, is shaped like a flattened triangle, with the top and bottom wings pointing toward each other.

 

The configuration, according to his calculations, cancels out shock waves produced by each wing alone.

 

However, the design lacks lift: The two wings create a very narrow channel through which only a limited amount of air can flow.

 

When transitioning to supersonic speeds, the channel, Wang says, could essentially "choke," creating incredible drag. While the design could work beautifully at supersonic speeds, it can't overcome the drag to reach those speeds.

 

To address the drag issue, Wang, Hu and Jameson designed a computer model to simulate the performance of Busemann's biplane at various speeds.

 

At a given speed, the model determined the optimal wing shape to minimize drag.

 

The researchers then aggregated the results from a dozen different speeds and 700 wing configurations to come up with an optimal shape for each wing.

 

They found that smoothing out the inner surface of each wing slightly created a wider channel through which air could flow.

 

The researchers also found that by bumping out the top edge of the higher wing, and the bottom edge of the lower wing, the conceptual plane was able to fly at supersonic speeds, with half the drag of conventional supersonic jets such as the Concorde.

 

Wang said this kind of performance could potentially cut the amount of fuel required to fly the plane by more than half.

 

The study will be published in the Journal of Aircraft. (ANI)

 


LATEST IMAGES
Manohar Lal being presented with a memento
Manoj Tiwari BJP Relief meets the family members of late Ankit Sharma
Haryana CM Manohar Lal congratulate former Deputy PM Lal Krishna Advani on his 92nd birthday
King of Bhutan, the Bhutan Queen and Crown Prince meeting the PM Modi
PM Narendra Modi welcomes the King of Bhutan
Post comments:
Your Name (*) :
Your Email :
Your Phone :
Your Comment (*):
  Reload Image
 
 

Comments:


 

OTHER TOP STORIES


Excellent Hair Fall Treatment
Careers | Privacy Policy | Feedback | About Us | Contact Us | | Latest News
Copyright © 2015 NEWS TRACK India All rights reserved.