Washington, Mar 21 (ANI): Researchers have shed new light into the elusive origins of an important class of exploding star called Type Ia supernovae.
These explosions, which can outshine their galaxy for weeks, release large and consistent amounts of energy at visible wavelengths.
These qualities make them among the most valuable tools for measuring distance in the universe.
Because astronomers know the intrinsic brightness of Type Ia supernovae, how bright they appear directly reveals how far away they are.
"For all their importance, it's a bit embarrassing for astronomers that we don't know fundamental facts about the environs of these supernovae," said Stefan Immler, an astrophysicist at NASA's Goddard Space Flight Center in Greenbelt, Md.
"Now, thanks to unprecedented X-ray and ultraviolet data from Swift, we have a clearer picture of what's required to blow up these stars."
According to the most popular scenario, a white dwarf orbits a normal star and pulls a stream of matter from it.
This gas flows onto the white dwarf, which gains mass until it reaches a critical threshold and undergoes a catastrophic explosion.
"A missing detail is what types of stars reside in these systems. They may be a mix of stars like the sun or much more massive red- and blue-supergiant stars," said Brock Russell, a physics graduate student at the University of Maryland, College Park, and lead author of the X-ray study.
In a competing model, the supernova arises when two white dwarfs in a binary system eventually spiral inward and collide. Observations using X-ray and ultraviolet observations from NASA's Swift satellite suggest both scenarios occur in nature, but no one knows which version happens more often.
Swift's primary mission is to locate gamma-ray bursts, which are more distant and energetic explosions associated with the birth of black holes. Between these bursts, astronomers can use Swift's unique capabilities to study other objects, including newly discovered supernovae.
The satellite's X-ray Telescope (XRT) has studied more than 200 supernovae to date, with about 30 percent being Type Ia.
Russell and Immler combined X-ray data for 53 of the nearest known Type Ia supernovae but could not detect an X-ray point source. Stars shed gas and dust throughout their lives.
When a supernova shock wave plows into this material, it becomes heated and emits X-rays. The lack of X-rays from the combined supernovae shows that supergiant stars, and even sun-like stars in a later red giant phase, likely aren't present in the host binaries.
In a companion study, a team led by Peter Brown at the University of Utah in Salt Lake City looked at 12 Type Ia events observed by Swift's Ultraviolet/Optical Telescope (UVOT) less than 10 days after the explosion.
A supernova shock wave should produce enhanced ultraviolet light as it interacts with its companion, with larger stars producing brighter, longer enhancements. Swift's UVOT detected no such emission, leading the researchers to exclude large, red giant stars from Type Ia binaries.
Taken together, the studies suggest the companion to the white dwarf is either a smaller, younger star similar to our sun or another white dwarf.
The study will appear in The Astrophysical Journal Letters. (ANI)
|
Read More: Karna Lake | Dal Lake Bo | Lake-view-camp So | United Salt Work | Madhavan Park | Hessarghatta Lake | Mv Salt Complex | Periyar Lake Ndbo | Park Street Ho | Park Circus | Ramkrishna Park | Lake Market | Indrani Park | Jayshree Park | Regent Park | Lake Gardens | Dum Dum Park | Jodhpur Park | Lake Town | Lake Town Ndso
Comments: