Search: Look for:   Last 1 Month   Last 6 Months   All time

Experts refute accepted model of memory formation

Washington , Thu, 03 Jan 2013 ANI

Washington, January 3 (ANI): In a new study, researchers have shown that a widely accepted model of long-term memory formation - that it hinges on a single enzyme in the brain - is flawed.

The new study by Johns Hopkins researchers found that mice lacking the enzyme that purportedly builds memory were in fact still able to form long-term memories as well as normal mice could.

"The prevailing theory is that when you learn something, you strengthen connections between your brain cells called synapses," Richard Huganir said.

"The question is, how exactly does this strengthening happen?" he said.

A research group at SUNY Downstate, led by Todd Sacktor, Ph.D., has suggested that key to the process is an enzyme they discovered, known as PKM-zeta. In 2006, Sacktor's group made waves when it created a molecule that seemed to block the action of PKM-zeta - and only PKM-zeta.

When the molecule, dubbed ZIP, was given to mice, it erased existing long-term memories. The molecule caught the attention of reporters and bloggers, who mused on the social and ethical implications of memory erasure.

But for researchers, ZIP was exciting primarily as a means for studying PKM-zeta.

"Since 2006, many papers have been published on PKM-zeta and ZIP, but no one knew what PKM-zeta was acting on," Lenora Volk, a member of Huganir's team, said.

"We thought that learning the enzyme's target could tell us a lot about how memories are stored and maintained," Volk said.

For the current study, Volk and fellow team member Julia Bachman made mice that lacked working PKM-zeta, so-called genetic "knockouts." The goal was to compare the synapses of the modified mice with those of normal mice, and find clues about how the enzyme works.

But, says Volk, "what we got was not at all what we expected. We thought the strengthening capacity of the synapses would be impaired, but it wasn't."

The brains of the mice without PKM-zeta were indistinguishable from those of other mice, she says. Additionally, the synapses of the PKM-zeta-less mice responded to the memory-erasing ZIP molecule just as the synapses of normal mice do.

The team then considered whether, in the absence of PKM-zeta, the mouse brains had honed a substitute synapse-building pathway, much in the way that a blind person learns to glean more information from her other senses. So the researchers made mice whose PKM-zeta genes functioned normally until they were given a drug that would suddenly shut the gene down.

This allowed them to study PKM-zeta-less adult mice that had had no opportunity to develop a way around the loss of the gene. Still, the synapses of the so-called conditional knockout mice responded to stimuli just as synapses in normal mice did.

What this means, the researchers say, is that PKM-zeta is not the key long-term memory molecule previous studies had suggested, although it may have some role in memory.

"We don't know what this ZIP peptide is really acting on," Volk said.

"Finding out what its target is will be quite important, because then we can begin to understand at the molecular level how synapses strengthen and how memories form in response to stimuli," Volk added.

The study has been published in Nature. (ANI)


LATEST IMAGES
Manohar Lal being presented with a memento
Manoj Tiwari BJP Relief meets the family members of late Ankit Sharma
Haryana CM Manohar Lal congratulate former Deputy PM Lal Krishna Advani on his 92nd birthday
King of Bhutan, the Bhutan Queen and Crown Prince meeting the PM Modi
PM Narendra Modi welcomes the King of Bhutan
Post comments:
Your Name (*) :
Your Email :
Your Phone :
Your Comment (*):
  Reload Image
 
 

Comments:


 

OTHER TOP STORIES


Excellent Hair Fall Treatment
Careers | Privacy Policy | Feedback | About Us | Contact Us | | Latest News
Copyright © 2015 NEWS TRACK India All rights reserved.