Search: Look for:   Last 1 Month   Last 6 Months   All time

Single-step technique spells hope for grapheme-based electronic devices

Washington, Sun, 14 Feb 2010 ANI

Washington, Feb 14 (ANI): Scientists have come up with a simple one-step process that produces both n-type and p-type doping of large-area graphene surfaces could facilitate use of the promising material for future electronic devices.

 

By applying a commercially-available spin-on-glass (SOG) material to graphene and then exposing it to electron-beam radiation, researchers at the Georgia Institute of Technology created both types of doping by simply varying the exposure time.

 

Higher levels of e-beam energy produced p-type areas, while lower levels produced n-type areas. he technique was used to fabricate high-resolution p-n junctions.

 

When properly passivated, the doping created by the SOG is expected to remain indefinitely in the graphene sheets studied by the researchers.

 

"This is an enabling step toward making possible complementary metal oxide graphene transistors," said Raghunath Murali, a senior research engineer in Georgia Tech's Nanotechnology Research Center.

 

In the new doping process, Murali and graduate student Kevin Brenner begin by removing flakes of graphene one to four layers thick from a block of graphite.

 

They place the material onto a surface of oxidized silicon, then fabricate a four-point contact device.ext, they spin on films of hydrogen silsesquoxane (HSQ), then cure certain portions of the resulting thin film using electron beam radiation.

 

The technique provides precise control over the amount of radiation and where it is applied to the graphene, with higher levels of energy corresponding to more cross-linking of the HSQ.

 

"We gave varying doses of electron-beam radiation and then studied how it influenced the properties of carriers in the graphene lattice," Murali said.

 

"The e-beam gave us a fine range of control that could be valuable for fabricating nanoscale devices. We can use an electron beam with a diameter of four or five nanometers that allows very precise doping patterns," he added.

 

Electronic measurements showed that a graphene p-n junction created by the new technique had large energy separations, indicating strong doping effects, he added.

 

Researchers elsewhere have demonstrated graphene doping using a variety of processes including soaking the material in various solutions and exposing it to a variety of gases.

 

The Georgia Tech process is believed to be the first to provide both electron and hole doping from a single dopant material. (ANI)

 


LATEST IMAGES
Manohar Lal being presented with a memento
Manoj Tiwari BJP Relief meets the family members of late Ankit Sharma
Haryana CM Manohar Lal congratulate former Deputy PM Lal Krishna Advani on his 92nd birthday
King of Bhutan, the Bhutan Queen and Crown Prince meeting the PM Modi
PM Narendra Modi welcomes the King of Bhutan
Post comments:
Your Name (*) :
Your Email :
Your Phone :
Your Comment (*):
  Reload Image
 
 

Comments:


 

OTHER TOP STORIES


Excellent Hair Fall Treatment
Careers | Privacy Policy | Feedback | About Us | Contact Us | | Latest News
Copyright © 2015 NEWS TRACK India All rights reserved.